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The vibration control of a #exible beam subjected to arbitrary, unmeasurable disturbance
forces is investigated in this paper. The beam is analyzed by using modal expansion theorem.
The independent modal space control is adopted for the active vibration control. Discrete
sensors and actuators are used here. The modal "lters are used as the state estimator to
obtain the modal co-ordinates and modal velocities for the state feedback control. Because
of the existence of the disturbance forces, the vibration control only with the state feedback
control law cannot suppress the vibration well. The method of disturbance forces
cancellation is then added in the feedback loop. In order to implement the disturbance forces
cancellation, the unknown disturbance forces must be observed. The model error
compensator is employed to observe the unknown disturbance modal forces for the direct
cancellation. After the implementation of the disturbance modal forces cancellation, there
are still some residual disturbance modal forces which excite the beam. The disturbance
attenuation problem is of concern in the design of the state feedback control law. For
ensuring that in#uence of the residual disturbance modal forces is reduced to an acceptable
level, the robust static H

�
state feedback controller is designed. The vibration control

performances of the feedback control with the H
�

controller and the disturbance forces
cancellation are discussed.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

Vibration control of #exible structures is an important issue in many engineering
applications, especially for the precise operation performances in aerospace systems,
satellites, #exible manipulators, etc. The #exible structures consist of in"nite number of
modes and are always having low #exible rigidity and small material damping. A little
excitation may lead to large-amplitude vibration and long vibration decay time, and then
the challenge is always encountered in the vibration control design. Two types of control
methods, i.e., passive control and active control, are generally used. The passive vibration
control methods employ the passive elements, e.g., masses, dampers and springs, to adjust
the characteristics of controlled structures to the desired values. Di!erent from the passive
methods, the active vibration control supplies energy to suppress the vibration. The passive
vibration control is simple but sometimes it cannot meet the required control performance.
When better control performance is required, the active control is a selection. The
implementation of active vibration control needs lots of techniques involving the
measurement system, actuator elements and the controller design. During the past several
years, active vibration control has become realizable due to the advancements in the relative
hardware and software techniques.
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



878 D.-A. WANG AND Y.-M. HUANG
There were many researches on the active vibration control in the past years. Balas [1]
and Meirovitch et al. [2, 3] proposed the concept of the independent modal space control
(IMSC) for the #exible structures, where the structures were discretized by the modal
expansion method, and the modal feedback control was applied. Every mode is uncoupled
in the modal space and is individually controlled. The modal co-ordinates were extracted
either by the Kalman "lter and Luenberger "lter or by the modal "lters in their studies. The
observation and control spillover concepts were also introduced in their researches. From
references [1}3], the modal space vibration control only with the state feedback is useful for
the suppression of structures vibration without any disturbance forces. When the structures
are excited by external disturbances, vibration control often focuses on isolating the
structures from the disturbances, or con"ning the vibration to certain unimportant areas of
the structures [4, 5]. However, it is impossible to completely isolate the structures from the
undesired excitation. There is still some excitation transmitted into the structures. When
high operation performances of the structures are required, the control algorithm only with
the state feedback cannot suppress the external excitation well. In order to reduce the
in#uence of the external excitation, we desire to cancel out the disturbance modal forces by
the feedback loop. If the applied disturbance modal forces can be observed, the observed
disturbance modal forces can be used in the feedback loop to eliminate the undesired
disturbances directly. The vibration of structures then can be greatly suppressed. There
have been many works that have observed the unknown disturbances [6, 7]. But the
di$culty imposed by these methods is that some level of di!erentiation of the measured
signals is necessary, and the noise will be ampli"ed. Recently, Tu et al. [8] developed
a model error compensator (MEC), which can observe the unknown disturbances and no
di!erentiation of the measured signals is required. Then it is suitable to employ the MEC as
the disturbance force observer in our paper to observe the unknown disturbance modal
forces for the direct disturbances cancellation in the feedback control loop.

In this paper an active control procedure to reduce the vibration of a beam subjected to
arbitrary, unmeasurable disturbance forces is studied. A Euler beam is considered. The
IMSC method is selected as the framework of the control algorithm. The MEC is employed
as the disturbance force observer. The feedback control with the combination of the state
feedback control law and the MEC is implemented. The modal "lters are used as the state
estimator of the modal space. Although the disturbance modal forces are directly canceled
out by the observed disturbance modal forces, there are still some residual disturbance
modal forces which excite the beam. In order to ensure the disturbance attenuation ability
of the state feedback controller, the robust H

�
controller synthesis methodology is applied

in this research. The control algorithm is derived from the static H
�

state feedback control
method [9, 10]. The discussions are concentrated on the e!ect of observing the disturbance
modal forces by the MEC and the control performances of the feedback control with MEC.

2. EQUATION OF MOTION

In this paper a slender, cantilever beam with constant cross-section area and length ¸,
shown in Figure 1, is considered. The axial direction is de"ned as the x-axis and t represents
time. Displacement in the transverse direction is denoted as y(x, t). The distributed
excitation force acting on the beam is P(x, t). The equation of motion of the beam can be
expressed as [11]

EI
��y
�x�

#m
��y
�t�

"P (x, t), (1)



Figure 1. The cantilever beam model with the dislocation sensors and actuators.
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where the Euler beam model is used. The notation E is Young's modulus of the beam
material, I is the area moment of inertia of the beam cross-section, and m is the mass per
unit length. De"ning the following dimensionless parameters:

yH"y/¸, xH"x/¸, tH"(�EI/m/¸�)t, PH"(¸�/EI)P (x, t) (2)

we have the non-dimensional equation of motion

��yH

�xH�
#

��yH

�tH�
"PH. (3)

The normalized mode shape corresponding to the rth mode of the dimensionless cantilever
beam is written as

>*
�
"A*

�
(sin �*

�
!sinh �*

�
) (sin �*

�
x*!sinh �*

�
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#(cos �*
�
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�
)(cos �*

�
x*!cosh �*

�
x*) (4)

with r"1, 2, 3,2 and AH
�

is a constant. In the above expression, the rth eigenvalue of the
dimensionless beam �H

�
should satisfy the characteristic equation cos �H

�
cosh �H

�
"!1. The

natural frequency of the rth mode is �H
�
"�H�

�
. For obtaining the time responses of the

dimensionless beam subjected to the dimensionless distributed force PH, the method of
truncated modal expansion is adopted here. The dimensionless displacement of the beam is
approximately expressed as

yH"

�
�
���

>H
�
�H
�
, (5)

where �H
�

is the rth modal co-ordinate, and n is the number of modes used. An extra modal
damping term of damping ratio �H

�
is added to each modal equation for representing the

structure damping. A set of uncoupled modal equations can then be obtained as

�( H
�
#2�H

�
�H

�
�� H
�
#�H�

�
�H
�
"nH

�
(6)

in which r"1, 2,2, n, and nH
�
"��

�
>H

�
PH dxH is the corresponding modal force. In the

following sections all the statements are discussed in this dimensionless system.



Figure 2. The modal space vibration control block diagram of the beam: (a) schematic diagram of the beam
vibration control; (b) the control block diagram of the rth mode of the beam.
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3. INDEPENDENT MODAL SPACE CONTROL

The scheme of control applied to the #exible beam here is based on the IMSC method
[1}3]. Every mode of the beam is independent, in this method, and is individually
controlled. The schematic diagram of the beam vibration control is shown in Figure 2(a).
The beam displacements and velocities are measured by discrete sensors. These data are
treated through the modal "lters. Then the modal co-ordinates and modal velocities can be
calculated. The feedback control algorithm is applied in this research. A MEC method [8],
discussed later, is presented. This technique is used as the disturbance forces the observer to
observe the disturbance modal forces. The observed disturbance modal forces will be
included in the feedback loop to suppress the responses of the beam due to the disturbance
forces. Then, combining the observed disturbance modal forces and the state feedback
control law together, we can obtain the control modal forces. Finally, the control modal
forces are transferred to the point actuators for reducing the beam vibration.

3.1. INDEPENDENT MODAL SPACE CONTROL

Since the distributed force PH applied to the beam is the sum of the unmeasurable
disturbance forces and the control forces, the rth modal force nH

�
of the beam can also be
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separated into two portions. One is the control modal force nH
��

and the other is the
disturbance modal force nH

��
. Here, nH

��
is a bounded input, but the bound is unknown.

It is convenient to rearrange each modal equation, given in equation (6), in the state-space
form

v�
�
"A

�
v
�
#B

�
nH
��
#C

�
nH
��

(7)

in which

v
�
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0
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. (8)

In order to reduce the in#uence of nH
��
, an observed disturbance modal force n( H

��
is

introduced in the feedback loop to cancel the undesired disturbance. This observed
disturbance modal force nL H

��
is included in the control modal force nH

��
.

According to the method of IMSC, each vibration mode is separately controlled. If the
state feedback law is chosen, the control modal force could be written as

n*
��
"!g

��
�*
�
!g

��
�R *
�
!n( *

��

"!G
�
v
�
!nL *

��
, (9)

in which G
�
"[g

��
g
��

]
���

are control gains to be determined. Then, the modal equations
with control can still be uncoupledly solved. Figure 2(b) shows the block diagram of the
control of the rth mode.

3.2. POINT ACTUATORS FORCES AND MODAL FILTERS

In the practice of vibration control of a distributed structure by the IMSC method, the
modal control forces can be approximated by using a "nite number of point actuators.
Suppose m discrete actuators are used at the points xH

�
, i"1, 2,2,m, to control the "rst

m modes of the beam, the dimensionless control force is expressed as FH"YH��NHc , where
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, (10)

and FH
�

is the ith dimensionless actuator force. The actuator locations xH
�

must be carefully
chosen to avoid the singularity of YH��.

The modal co-ordinates are not physical co-ordinates and therefore cannot be measured
directly. Theoretically, the modal co-ordinate and the modal velocity associated to the rth
mode can be calculated numerically by using the following integration forms:

�H
�
"�

�

�

>H
�
yH dxH, �R H

�
"�

�

�

>H
�
yR HdxH, (11)

where the distributed sensors are needed. Since the distributed sensors are not always
available, discrete sensors are usually used. Suppose the displacements of the beam can only
be obtained at certain points x	 H

�
, j"1, 2,2, k, where k discrete sensors are used, and the

"rst k modal co-ordinates will be estimated. The estimated modal co-ordinates �L H
�

and
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modal velocities �L� H
�

based on discrete measurements become [12]
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Note that the inverse of DH must exist. The estimated modal co-ordinates and modal
velocities will replace �H

�
and �R H

�
, r"1, 2, 2, k, in equation (9) when the control modal force

is applied.
The modal equations of the beam, equation (6), are valid for both the controlled and the

uncontrolled modes. Then, the associated second order modal equations with control loops
can be written as

VG
�
#�

�
V


�
#�

�
V

�
"N

�
#N

��

VG
	
#�

	
V


	
#�

	
V

	
"N

	
#N

�	
, (14)

where the subscripts c and u refer to the controlled and uncontrolled modes respectively.
Notations V, �, �, N and N

�
are the modal co-ordinate vector, diagonal modal damping

matrix, diagonal modal natural frequency matrix, control modal force vector, and the
external disturbance modal force vector respectively. From equation (14), the e!ects of
observation and control spillover can be discussed. The observation spillover and control
spillover are inherent characteristics in structural vibration control. The observation
spillover occurs when the unobserved modes responses are embedded into the modal
"ltering. This spillover e!ect can reduce the accuracy of estimated modal co-ordinates and
modal velocities, and can shift the uncontrolled modes eigenvalues when the feedback
control is applied [1}3, 12]. The observation spillover may even induce the instability of the
system. The selection of sensor positions plays an important role in the phenomenon of
observation spillover [3, 12]. Usually, the lower vibration modes dominate the responses of
structures. When the sensors are placed at the nodes of the lowest unobserved mode, the
amplitude contribution of the unobserved modes to the modal "lters can be greatly
decreased. Consequently, the observation spillover is reduced. Other useful ways to
eliminate the observation spillover involve the use of the pre"lters to screen out the
contribution of the unobserved modes or the use of more sensors to interpolate the modal
co-ordinates precisely [1}3, 12]. The other issue, control spillover, occurs when N

	
O0, in

equation (14). The actuator forces for the controlled modes can excite the uncontrolled
modes. The control spillover phenomenon can be reduced by placing the actuators at the
nodes of the lowest uncontrolled mode [3]. The control spillover only degrades the
performance of the control responses but cannot destabilize the system [1}3].

4. H
�

CONTROLLER DESIGN

Every vibration mode is individually controlled in the IMSC. From equations (7)}(9),
some undesired excitation from the residual disturbance modal force nH

��
!nL H

��
still exists
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Figure 3. The framework of the static state feedback H
�

control system.

when the control modal force nH
��

is applied. The selection of the control gains G
�
must

ensure a suitable disturbance attenuation ability for the controlled mode. The
H

�
controller design is then adopted here.

In this section, the static state feedback H
�
-based robust controller design is brie#y

discussed. The H
�

norm of a stable transfer matrix T
�
(s) is de"ned as its largest singular

value over the entire frequency range, i.e.,

�T
�
( jw)�

�
"sup

�
�N [T

�
( jw)], (15)

where �N represents the largest singular value of T
�
( jw). In the H

�
-based control system

design, a controller is selected to internally stabilize the system in such a way that the
H

�
norm of a transfer matrix, which describes certain design objectives, is minimized (or

becomes smaller than a speci"ed value).
When the observed disturbance modal force nL H

��
, obtained from the MEC, is applied in the

feedback loop, the modal equation (7) can be rearranged as the following augmented
system:

v�
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�
v
�
#B

�
n
*
��

#C
�
�n*

��
,

z
�
"E

��
v
�
#E

��
n
*
��
, (16)

in which n
*
��

"!G
�
v
�
, �nH

��
"nH

��
!nL H

��
and z

�
is the de"ned controlled output. The de"ned

control output z
�

includes two portions, E
��

v
�

and E
��
n
*
��
. In this study the "rst term

indicates the restriction of the magnitudes of state responses where E
��

is the associated
weighting matrix. The second term indicates the constraint of the magnitudes of control
forces where E

��
is the associated weighting matrix. The static state feedback control is

applied. Figure 3 shows the framework of the static state feedback H
�

control problem.
De"ne the transfer matrix T

�
(s),(E

��
!E

��
G

�
)(sI

�
!A

�
#B

�
G

�
)��C

�
, which denotes the

closed-loop transfer matrix from the residual disturbance modal force �nH
��

to the controlled
output z

�
. The problem now is to design a static state feedback control law n
*

��
"!G

�
v
�

such that the following objectives are achieved:

(1) The closed-loop matrix A
�
!B

�
G

�
is stable.

(2) �T
�
(s)�

�
(�

�
, where �

�
is a speci"ed value.

The �T
�
(s)�

�
is an appropriate measurement of the in#uence on the disturbance on the

system output. Although the bounded property of ��nH
��

�
�
is not guaranteed, the controller

derived from the transfer matrix T
�
(s) is still applicable. An algebraic Riccati equation

approach to "nd the H
�

control gains [9] is employed, where the static state feedback
control law is obtained by solving a single Riccati equation. If the following Riccati
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equation

A	
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X
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#���
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X

�
C
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1

�
��

X
�
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E
��

#�
��

I
�
"0 (17)

has a positive de"nite solution X
�
for some �

�
and �

��
, where �

��
'0, then the staticH

�
state

feedback gains are given by

G
�
"

1

2�
��

B	
�
X

�
(18)

such that A
�
!B

�
G

�
is stable and �T

�
(s)�

�
is less than �

�
.

To solve the static state feedback H
�

control problem, one can simply solve Riccati
equation (17) with successively smaller values of �

�
. The following conceptual algorithm can

be used to "nd the H
�

controller systematically:

(1) Given �
�
.

(2) Let �
��

"1.
(3) Solve equation (17). If X

�
'0, go to 4. Otherwise, if equation (17) does not have

a positive de"nite symmetric solution even for a su$ciently small �
��

(�1), then
increase �

�
, and go to 2.

(4) If �
�
(speci"ed performance level, compute G

�
as in equation (18). Otherwise,

decrease �
�
, and go to 2.

The above iterative procedure can also be used to "nd the in"mal of �T
�
(s)�

�
and the

associated controller for the optimal disturbance attenuation.

5. MODEL ERROR COMPENSATOR (MEC)

The MEC [8] employed here is a disturbance force observer which can accurately
estimate the disturbance modal forces in some prescribed performance bound of
disturbance estimation error. The major advantage of the MEC is that no di!erentiation of
the measured signals is required. The idea of MEC is motivated by the invertibility criterion
of a linear time-invariant state equation [13]. As pointed out by Moylan [13], if the system
is invertible, then it turns out to be possible to reproduce the input functionally from the
knowledge of the output. From equation (7), it is evident that nH

��
has the potential to be

functionally reproduced if the inverse of equation (7) exists.
Consider the rth modal equation

v�
�
"A�

�
v
�
#C

�
n*
��
,

z
��

"C�
��

v
�
, (19)

where no observed disturbance modal force is applied. The matrix A�
�
is A�

�
"A

�
!B

�
G

�
,

z
��

is the de"ned measured output for constructing MEC and C�
��

is a de"ned matrix. The
vector z

��
and matrix C�

��
have appropriate dimensions. Suppose the system, equation (19),

is both controllable and observable, and the invertibility of the triple (A�
�
,C

�
,C�

��
) is held.

Then, the model error, the disturbance modal force nH
��
, could be approximated by the

measured output z
��

[8]. An auxiliary system

v( �
�
"A�

�
v(
�
,

z(
��

"C�
��

v(
�

(20)

is established, where nH
��

is not considered. By comparing equation (20) with the system (19),
it is clear that in general z;

��
Oz

��
because of the existence of nH

��
. According to the
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invertibility criterion given by Moylan [13], nH
��

is a linear function of zm�
. Instead of "nding

nH
��

directly from z
��

, it is suitable to obtain nH
��

from the di!erence between z
��

and z;
��

to
avoid the di!erentiation of the measured output signal z

��
. A candidate approximation of

the model error nH
��

is given by [8]

n*
��

+nL *
��

"g�
�
(z

��
-z;

��
), (21)

where g
�
is a matrix. By adding this approximation function to equation (20), the auxiliary

system becomes

v(

�
"A�

�
v(
�
#C

�
g�
�
(z
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!z(

��
),

z(
��

"C�
��

v(
�
. (22)

The above equation is a new model, in which the model error nH
��

has been compensated by
n( H
��
. Subtracting equation (22) from equation (19), we have

e�
�
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�
e
�
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�
e
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e
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e
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(23)
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�
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)e
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�
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,

e
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��

e
�
, (24)

where e
�
"v

�
!v(

�
denotes the state estimation error, e


�
"z

��
!z(

��
denotes the output

estimation error and e
��

"nH
��

!g�
�
e

�

is the disturbance estimation error. Equations (23)
and (24) are the same but in di!erent forms. De"ne the following two transfer matrices

L�e
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�"T� 1� (s) L�e
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where T�
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(s)"C�
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[sI
�
!(A�

�
!C

�
g
�
C�

��
)]��C

�
. Combining equations (25) and (26), we

have

T� 1� (s)L�e
��

�"T�
��

(s)L�n*
��

�. (27)

From the above equation, we can design an appropriate g�
�
in T�

��
(s) to ensure that the

disturbance estimation error e
��

is su$ciently small. Hence, the objective of MEC is to "nd
a suitable g�

�
in T�

��
(s), such that the disturbance estimation error is bounded as

�e
��
(s)�

�
(�

��
, (28)

where �
��

is a prescribed speci"cation. Moreover, �T�
��

(s)�
�

must be bounded as

�T�
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[sI
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�
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�
C�
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)]��C

�
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(

�
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�
�
�
�

. (29)

The factor �
�
is associated with the bound of the changing rate of the disturbance modal

force, and the factor �
�
is associated with the relativeH

�
norm of T�

��
(s). The determination

of �
�
and �

�
can be found in reference [8]. Equation (29) becomes the design objective of

"nding g�
�
. Matrix g�

�
can be determined by the general H

�
output feedback controller

synthesis [14] or a simple method described in reference [8] where the Nelder}Mead
simplex algorithm is employed [15]. If no such matrix g�

�
can be found, we could relax �

��
, or



Figure 4. The block diagram of the conventional observer with the model error compensator (MEC).
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only minimize �T�
��

(s)�
�
. The unknown disturbance nH

��
can then be accurately observed by

equation (21) when the matrix g�
�
is determined. Note that no di!erentiation is necessary in

the calculation of nL H
��
. With the H

�
control gains determined by equation (18) and the

observed disturbance modal force from equation (21), the control modal force, equation (9),
can be obtained. The time responses of the beam can also be obtained from equation (5)
after controlled modal equations (7) are solved.

The MEC is usually incorporated with the conventional state estimator. Figure 4
illustrates the conjunction block diagram of the estimator system, where the observed
disturbance modal force n( H

��
is used to cancel out nH

��
in the feedback loop. The state v

�
is

obtained from the modal "lters. The conventional estimator with MEC is described as

v(�
�
"A�

�
v(
�
#K�

�
(y

�
!y(

�
)#C

�
g�
�
(z

��
!z( m�

)

"(A�
�
!K�

�
C�

��
)v(

�
#C

�
g�
�
(z

��
!z(

��
)#K�

�
y
�
,

z(
��

"C�
��

v(
�
,

y(
�
"C�

��
v(
�
,

n( *
��

"g�
�
(z

��
!z(

��
), (30)

where y
�
is the de"ned measured output of the system, y(

�
is the de"ned measured output of

the conventional observer, C�
��

is a de"ned matrix and K�
�
is a conventional observer gain.

Note that the transfer matrices T�
��

(s) and T�
��

(s) now should be determined by replacing
matrix A�

�
with A�

�
!K�

�
C�

��
. The error dynamics of this observer system can be found in

reference [8]. A two-step observer design strategy [8] is employed here. First, select
a suitable C�

��
in equation (19) to guarantee the invertibility of the system for constructing

the MEC. Second, design a conventional observer and add MEC to the observer, and then
determine the MEC gains g�

�
.
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6. NUMERICAL SIMULATION AND DISCUSSIONS

The simulation of the vibration control is carried out in the dimensionless system.
A cantilever beam subjected to unmeasurable disturbance forces is considered here. To
provide a suitable disturbance attenuation, the static state feedback H

�
controller is used.

The truncated beam model is adopted. The "rst 10 modes of the beam, including both the
controlled and uncontrolled modes, are used to represent the total beam responses in the
numerical calculation. The damping ratio �H

�
of the modes is �H

�
"0)05. According to IMSC

for distributed structures, each mode is individually controlled. The modal "lters are used as
the state estimator. The disturbance force observer, MEC, merged in the feedback loop,
provides the observed disturbance modal forces for compensating the undesired
disturbancemodal forces. The initial conditions of the beam are yH(1,0)"0, y� H(1,0)"0 and
the disturbance force is applied at the tip of the beam. The ideal sensors and actuators used
for the active vibration control are dislocated from each other. The locations of sensors and
actuators play a major role in the vibration control e!ect of structures. Because of the need
for observing the disturbance modal forces accurately in this research, the number of
observed modes is more than the number of controlled modes. The "rst four modes are
controlled here. The "rst six modal co-ordinates and modal velocities are observed. The six
sensors are distributed near the nodes of the seventh mode, then the observation spillover is
largely eliminated. The sensor locations x	 H

�
are (0)19, 0)35, 0)50, 0)65, 0)81, 0)95). For using

less actuator forces to control the structure vibration, good locations of the actuators are
the points near the antinodes of the controlled mode shapes. The four actuator locations
xH
�
are at (0)29, 0)47, 0)69, 1)00), which are the points at which the antinodes of the "rst three

mode shapes occur.

6.1. ESTIMATED STATES BY USING MODAL FILTERS

The purpose of the modal "lters is to obtain the modal co-ordinates and modal velocities.
Figure 5 illustrates the estimated modal co-ordinates from the modal "lters, where the
dimensionless disturbance force is PH"sin tH and no control is applied. The estimated
modal co-ordinates are shown by the solid lines and the theoretical results are indicated by
the dashed lines. From Figure 5(a), it can be seen that the "rst estimated modal co-ordinate
is almost the same as the theoretical value. Figure 5(b) illustrates the fourth estimated modal
co-ordinate, in which small observation spillover is found. Figure 5(c) shows the latest
estimated modal co-ordinate, the sixth mode. Obviously, the observation spillover is large
for this mode. In conclusion, the estimated modal co-ordinates of the lower modes are more
accurate than the higher ones [12]. The observation spillover is more evident in higher
modes.

6.2. MODAL SPACE VIBRATION CONTROL WITH H
�

CONTROLLER AND MEC

The estimated modal co-ordinates and velocities in section 3.2 are not only used to
generate the control modal forces in the modal space vibration control, but also used as the
measured output of the modal equations for constructing the MEC and the conventional
observer. The modal control forces consist of the static H

�
state feedback control law and

the observed disturbance modal forces n( H
��

from MEC. After the modal control forces are
obtained, they are transformed by the Y*�� in equation (10) to generate the point actuators
forces which will be applying at the beam.



Figure 5. The estimated modal co-ordinates by using modal "lters: (a) the "rst mode; (b) the fourth mode;
(c) the sixth mode.
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6.2.1. H
�
controller design

The design objective of theH
�

controller is to "nd the control gains G
�
which ensure that

the closed-loop equations of controlled modes are stable and that �T
�
(s)�

�
are less than �

�
.

We select E
��

"[�
�

�
�
] and E

��
"[1 1]	 for all controlled modes. All the magnitudes of

modal co-ordinates and velocities have the same weighting. Instead of choosing
a prescribed �

�
for the H

�
controller design, we intend to "nd the in"mal �H

�
of each

controlled mode as the controller design speci"cation. Applying the procedure given in
section 4, �H

�
of the controlled modes and the associated positive de"nite solutions X

�
of the

Riccati equations can be obtained. With the positive de"nite solutions X
�
, the static

H
�

state feedback gains G
�
can be found from equation (18). Then, the modal state space

feedback control forces are n
*
��

"!G
�
v
�
. Table 1 gives the list of in"mal �H

�
within

a tolerance of 0)001 and G
�
for the controlled modes. Figure 6 gives the maximum singular

value plots of T
�
(s) of all modes from the modal space viewpoint. The solid line indicates the

maximum singular value of the controlled system and the dashed line exhibits the maximum
singular value of the uncontrolled system. The H

�
norm of the lower modes is greater than

that of the higher modes. Figure 6 shows that the �T
�
(s)�

�
of the controlled modes are

reduced to the associated in"mal �H
�
.



TABLE 1

¹he in,mal �H
�

of �T
�
(s)�

�
and the associated H

�
control gains

Mode no. �H
�

G
�
"[g

��
g
��

]

1 0)865 [0)5097 0)8581]
2 0)421 [0)2752 0)6557]
3 0)195 [0)7678 0)5695]
4 0)110 [0)5000 0)5317]

¹he conventional observer gains K�
�
and the MEC gains g�

�

Mode no. K�
�
"[k

��
k
��

]	 g�
�

1 [16)97 86)59]	 39)5726
2 [16)24 !397)30]	 39)1891
3 [14)30 !3743)71]	 38)0664
4 [11)00 !14580)00]	 35)7151

Figure 6. The maximum singular value plot of T
�
(s) of the beam.
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6.2.2. ¹he Model Error Compensator design

The purpose of the MEC presented in this paper is to observe the unknown disturbance
modal forces, which will be used in the feedback loop to cancel out the undesired
disturbances. After the design of H

�
controller, the MEC can be constructed. The MEC

proposed here is usually incorporated with the conventional observer. Let C�
��

"[0 1] for
all controlled modes in our case. From the invertibility criterion given by Moylan [13], the
modal equation in equation (19) is invertible. The proposed MEC method can then be
employed to observe the disturbance modal forces.

Before designing the MEC gains g
�
, the conventional observer is designed "rst. De"ne

C�
��

"[1 0] for all controlled modes. The modal co-ordinates become the measured output



Figure 7. The bode plots of T�
��

(s) of the controlled modes.
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for constructing the observer. The associated conventional observer gain vectors are
K�

�
"[k

��
k
��

]	 for the controlled modes. From Figure 4 and the error dynamics analysis
given in reference [8], if the gain vectors K�

�
are properly designed, then the estimated states

v(
�
will have the tendency to be driven to the actual states v

�
. The observed disturbance

modal forces are more accurate with the existence of the observer gain vectors K�
�
. Let the

observer poles for all controlled modes have the same values s
�
�

"!9$j6. The
associated observer gain vectors K�

�
can be determined and are given in Table 1. With

the matrices C�
��

chosen before, the associated MEC gains g�
�

now are scalars and
T�
��

(s) are transfer functions. The observed disturbance modal forces are given
by n( H

��
"g�

�
(z

��
!z(

��
)"g�

�
[0 1] (v

�
!v(

�
). The designed speci"cations of the disturbance

estimation errors are �e
��
(s)�

�
(0)2 for all controlled modes. Let �

�
"36)37 and �

�
"0)25

for all controlled modes. Then the corresponding bounds of �T�
��

(s)�
�

are less than 0)022. In
this paper we adopt a simplex method presented in reference [8] to solve g�

�
. This method

employs the Nelder}Mead simplex algorithm [15], a direct search method, for minimizing
a function of several variables. The solutions of g�

�
for the controlled modes are given in

Table 1. The observed disturbancemodal forces n( H
��

then can be applied in the feedback loop
to cancel out the disturbance modal forces n*

��
.

Figure 7 exhibits the bode plots of T�
��

(s) for the controlled modes. The solid line, dashed
line, dash}dot}dash line and dotted line show the bode plots of T�

��
(s) for the "rst, second,

third and fourth modes, respectively. It is seen that �T�
��

(s)�
�

are less than the desired upper
bound 0)022 when the designed MEC gains g�

�
are given, and the prescribed bounded

disturbance estimation errors �e
��
(s)�

�
(0)2 are achieved for all controlled modes.

Figure 8 illustrates the performance of the disturbance force observer MEC for observing
di!erent types of disturbance forces for the "rst mode. The e!ect of tracking the sine
function, sin tH, is shown in Figure 8(a). The solid line displays the observed disturbance
modal force n( H

��
. The dashed line indicates the real disturbance modal force nH

��
. Figure 8(b)

represents the result of observing the sin tH ) e�����*, Figure 8(c) shows the result of observing
the force 0)4 sin tH#0)3 cos 2tH#0)3 sin(4tH#1), and Figure 8(d) illustrates the result of
observing the step function of amplitude 1. Good accuracy of observing the disturbance
modal forces nH

��
can be achieved by means of the MEC presented. The more accurately the



Figure 8. The observed disturbance modal forces via the model error compensator: (a) sin tH; (b) sin tH e�����*;
(c) 0)4 sin tH#0)3 cos 2tH#0)3 sin(4tH#1); (d) step function of amplitude 1.
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disturbance modal forces are observed, the better cancellation of these disturbance forces
will be obtained when the feedback control is implemented. From Figure 8, we also see that
when the changing rates of the disturbance forces are great, the estimation errors are larger
than those when the changing rates are small. The changing rates of the disturbance forces
are not predictable, and sometimes they do not satisfy the bounds of the changing rate
factor �

�
. The MECmethod is accurate for observing the disturbancemodal forces when the

changing rates of the disturbance forces are small. Although some unexpected disturbances
perhaps destabilize the control system, the MEC approach can work well in the general
engineering applications.

The control modal forces applied in the feedback loop involve the static H
�

state
feedback control law and the observed disturbance modal forces. The static H

�
state

feedback control law provides the optimal disturbance attenuation ability, and the observed
disturbance modal forces are used to directly cancel out the undesired disturbances.
Figure 9 exhibits the controlled and uncontrolled frequency response function plots of
the beam from the tip disturbance force to the tip displacement. The solid line indicates the



Figure 9. The frequency response function plots of the beam from the tip excitation to the tip displacement.
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beam frequency response function plot under the static H
�

state feedback control. The
dashed line displays the uncontrolled beam frequency response function plot. The
maximum frequency response of the beam is reduced about 82)9%.

The time-domain control responses are given below. The "rst four modes of the beam are
controlled and the dimensionless disturbance force is sin tH if not speci"ed. Figure 10
illustrates the "rst mode responses of the beam under the modal space vibration control
presented in this paper. The controlled responses are shown by the solid lines, and the
non-controlled responses are indicated by the dashed lines. It is seen that the staticH

�
state

feedback control with MEC can successfully suppress the modal responses. It is also
interesting to note that the steady state responses of the "rst mode are not zero. This is
because the disturbance modal force nH

��
has not been entirely eliminated by n( H

��
. The

residual disturbance modal force nH
��

!n( H
��

governs the steady state responses of the "rst
modal equation. Figure 11 shows the beam responses, represented by the solid lines, under
the modal space vibration control with the static H

�
state feedback control law and the

MEC. For comparison, the responses of the beam only with the static H
�

state feedback
control are illustrated by the dashed lines, and the non-controlled beam responses are
exhibited by the dash}dot}dash lines. From this "gure, it is obvious that the vibration
control e!ect of the beam with the disturbance excitation is not good if only the static



Figure 10. The responses of the "rst mode under the static H
�

state feedback control with MEC: (a) modal
co-ordinate; (b) modal velocity.
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H
�

state feedback control law is applied. The vibration of the beam excited by the
disturbance force can be suppressed well by using the static H

�
state feedback control law

withMEC. There is still some steady state vibration in Figure 11. It includes vibration of the
controlled modes, which cannot be entirely suppressed by n( H

��
, and the vibration of

uncontrolled modes. The uncontrolled modes are excited by the disturbance forces and the
control forces. The responses of the uncontrolled modes induced by the control forces are
called the control spillover. The phenomenon of the control spillover is not evident in this
case.

7. CONCLUSIONS

Active vibration control of a #exible beam, subjected to unknown disturbance forces, has
been investigated. The independent modal space control is used as the frame of the
vibration control of the distributed parameters structure. Discrete sensors and actuators are
used. The modal "lters are used for estimating the modal coordinates. The number of
sensors are more than the number of controlled modes for reducing the observation
spillover. The robust H

�
-based controller with the model error compensator is applied to

suppress the beam vibration. The model error compensator is used as the disturbance force
observer to observe the unknown disturbancemodal forces in some prescribed performance



Figure 11. The tip responses of the beam under the static H
�

state feedback control with MEC: (a) tip
displacement; (b) tip velocity.
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bound of disturbance estimation error. The model error compensator is designed within the
conventional state observer, where a two-step observer design strategy is employed. The
major advantage of the model error compensator is that no di!erentiation of the measured
signals is required. The undesired disturbance modal forces are directly cancelled out by the
observed disturbance modal forces through the feedback control loop. For ensuring
the optimal disturbance attenuation ability of the state feedback control law, the in"mal of
the H

�
norm of the de"ned input/output transfer functions are the design speci"cations

of the static H
�

state feedback control law. Simulation results show that the H
�
-based

controller with the model error compensator can suppress the vibration e!ectively.
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